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The field-dependent magnetization re(H, T) of one- and two-dimensional classical 
magnets described by the D-component vector model is calculated analytically in 
the whole range of temperature and magnetic fields with the help of the lID 
expansion. In the first order in I/D the theory reproduces with a good accuracy 
the temperature dependence of the zero-field susceptibility of antiferromagnets X 
with maximum at T ~< IJo J/D (Jo is the Fourier component of the exchange inter- 
action) and describes for the first time the singular behavior o fz (H,  T) at small 
temperatures and magnetic fields: l imr_  0 limH_ o x(H, T) = 1/(2 I J0 I)( 1 - 1/D) 
and lira N .  0 lim r - 0 Z( H, T) = 1/( 2 I Jo I ). 

KEY WORDS: Low-dimensional magnets; magnetic susceptibility; spherical 
model; I/D ( l /n)  expansion. 

1. I N T R O D U C T I O N  

A great variety of low-dimensional magnetic systems have been synthesized 
and experimentally investigated in recent decades (see, e.g., refs. 1 and 2). 
The idealized one- and two-dimensional models (without interplane or 
interchain coupling and anisotropy) are characterized by a strong short- 
range order in the low-temperature region, whereas the long-range order 
is ruled out as being smeared off by the long-wavelength spin waves. 
Complementary to the high-temperature series expansions (HTSE; see, 
e.g., refs. 3-5),.such approaches as "modified spin-wave theory ''t61 and 
"Schwinger boson mean-field theory '"7) were applied to low-dimensional 
antiferromagnets at low temperatures. These two methods giving very 
similar results (with a wrong factor in the antiferromagnetic susceptibility 
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in ref. 7) are not rigorous expansions in the parameter T/[JI ~ 1 (J is the 
exchange integral), but rather are variational approaches. The results break 
down, however, at T ~  [JI and thus cannot describe the situation in the 
whole temperature range. Since the absence of magnetization was intro- 
duced in ref. 6 as an additional self-consistency requirement, the generaliza- 
tion for the case with the external magnetic field H is a problem. 

In ref. 8 an analytical method of calculation of the physical quantities 
of classical low-dimensional magnets in the whole temperature range was 
proposed, which is based on the 1/D expansion for the model of 
D-component classical spin vectors on a latticelg~: 

I J f  = - H  ~ m i -  ~_ ~ Jijm,mj, Iml = 1 
i ij 

1.1) 

with the help of the diagram technique developed in ref. 10. For the Heisen- 
berg model (D = 3) in the first order in 1/D the calculated temperature 
dependences of the antiferromagnetic susceptibility and internal energy at 
H = 0 turn out to be very good, as shown by comparison with MC simula- 
tion data t~'l for the internal energy of the square lattice (s.1.) classical 
ferromagnet and with the exact results 1'2~ for a "toy" example of the classi- 
cal linear chain (1.c.) model. In particular, for both models the charac- 
teristic maximum of the antiferromagnetic susceptibility at T< IJol/D, in 
contrast to refs. 6 and 7, is well reproduced. The reason for the efficiency 
of the 1/D expansion even for D = 3 is that it yields the exact results for the 
energy and antiferromagnetic susceptibility at T ~ 0 and reproduces several 
leading terms of their HTSE expansions (81 interpolating thus between these 
limits in the whole temperature range. The applicability of the approach to 
classical low-dimensional magnets proposed in ref. 8 is not restricted to the 
case H =  0, and it can be applied to the problem of the singular behavior 
of the antiferromagnetic susceptibility zAF(H, T) at low temperatures and 
magnetic fields, i.e., the inpermutability of its limits l i m u _ o l i m r ~ o  
and l imr_olim,~_0,  which could not up to now be described by other 
analytical methods. The physical reason for such a singular behavior is the 
following. With lowering temperature the system becomes locally antiferro- 
magnetically ordered, and D - 1  susceptibilities transverse with respect to 
the local orientation of the sublattice tend to the value 1/(2 I J01) (Jo=zJ, 
z is the number of nearest neighbors), whereas the longitudinal suscep- 
tibility tends to zero. At H = 0  there is no preferred direction, and the 
susceptibility of the sample is given by the average over the local orienta- 
tions of sublattice magnetizations, which results in 

lim lim ZAV(H, T ) =  1/(2 I J01)(1 - 1/D) 
T ~ O  H ~ O  
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For the Heisenberg model this D-dependent factor makes up the well- 
known number 2/3. To the contrary, for arbitrarily small H r  0 at suf- 
ficiently low T the lowest energy state with the sublattice magnetizations 
driven perpendicular to the field H and tilted in the direction of H is 
realized. In this state the susceptibility takes on its transverse value 

lim lim XAF(H, T ) =  1/(2 [Jol) 
H ~ O  T ~ O  

A quantitative description of this effect with the help of the 1/D expansion 
and the calculation of the magnetization re(H, T) of low-dimensional 
classical antiferromagnets in the whole range of temperature and magnetic 
fields is the pupose of this work. 

The remainder of this paper is organized as follows. In Section 2 an 
improved version of the diagrammatic lID expansion for classical spin 
systems with magnetic field is developed and the results for the magnetiza- 
tion and spin-spin correlation function in the first-order in 1/1) are 
obtained. In Section 3 the general 1/19 results, given by double integrals 
over the Brillouin zone, are calculated analytically and analyzed for the 
classical linear chain model, for which there is no exact solution in the case 
with magnetic field. In Section 4 the results are converted for two-dimen- 
sional systems into a form convenient for numerical calculations and 
analysis at low temperatures, and the temperature and magnetic field 
dependences of the antiferromagnetic susceptibility are represented. In 
Section 5 some important features of the 1/D expansion and its applicability 
to systems with D = 2, 3 are discussed. 

2. THE  l ID E X P A N S I O N  

The physical quantities of ferro- and antiferromagnets described by the 
Hamiltonian (1.1) can be expanded in powers of 1/D with the help of the 
diagram technique for classical spin systems. 18"~~ Here the consideration of 
ref. 8 is improved and generalized to the case H :~ 0. We choose the z axis 
along the magnet.ic field H; the other (transverse) components of the 
spin vector m are designated by the index ct = 2, 3 ..... D. The wavevector- 
dependent transverse susceptibility X l(k) = 2'~(k) o f a classical spin system 
is related to the Fourier transform of the spin-spin correlation function 
S~(r - r ' )  = (m~(r) m~(r')) via the formula X.L(k) =fiSH(k), f l=  1/T. With 
the help of the diagram technique of ref. 8, x• can be represented as 

X.L(k) = (2.1) 
1 - -  .,t~,,,(k) ]~Jk 

822/83/5-6-8 
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where A~(k) is the compact (irreducible) part of S~(k) given by the 
diagrams, which cannot be cut by the one interaction line flJk. For 
isotropic systems considered here it is not necessary to write down the 
diagrams for the magnetization m =  (m: )  because re(H) can be deter- 
mined from (2.1). Indeed, in a transverse magnetic field H •  the 
magnetization m rotates simply by the angle 0=  H •  1, which results 
in the important relation 

Z •  =- x• = mlH (2.2) 

The longitudunal susceptibility can be determined now by the formula 

Z: = am~OH = Z• + H(OZJ_/aH) (2.3) 

which is much easier than the direct diagrammatic calculation of z-(k). 
The compact part A~(k) in (2.1) can be represented in the first order 

in l i d  by the diagram set from ref. 8 completed by additional diagrams for 
H 4: 0, which are selected according to the same rules. The general principle 
here is that the diagrams with multiple irreducible integrations over 
wavevectors (i.e., those that do not separate into products of independent 
simpler integrals) are small like the corresponding powers of 1/D. Thus, in 
each order in lID the complexity of diagrams to be taken into account is 
restricted: in the zeroth order in 1/D (the spherical model) only the 
diagrams with the one-loop integration over the Brillouin zone survive, and 
in the first order in lID the double integrals over the Brillouin zone appear. 
The large number of diagrams in the case H:~ 0 necessitates, however, an 
improvement of the method, which consists in taking into account some 
diagrams implicitly with the subsequent solution of the corresponding 
equation for A~(k). All the diagrams which contribute to A~(k) in the first 

Fig. 1. (a) Diagrams for the compact part A~(k) (see also Fig. 2a); (b) block summation of 
transverse loops for the renormalized cumulant one-site two spin average ,]~; (c) Dyson 
equation for the renormalized transverse interaction. 
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Fig. 2. (a) Additional 1/D diagrams for A,~(k); (b) Dyson equation for the renormalized 
longitudinal interaction; (c) ladder equation for the four-spin correlation line. 

order in 1 / D  are represented in Figs. 1 and 2. Note that the renormalized 
transverse interaction lines in Fig. 1 contain the unknown quantity A,~(k) 
itself, which means implicitly accounting for the additional class of 
diagrams of types I and 2 in Fig. 3 of ref. 8. At H = 0 from all the diagrams 
in Fig. 2a only the diagrams 1, 2, and 5 survive, and the last term in the 
Dyson equation for the longitudinal interaction line of Fig. 2b disappears. 
The wavevector dependence o f / l~ (k )  is due to the diagrams 5-8 in Fig. 2a. 
There is one more diagram 7' that is analogous to 7 and is not represented 
in Fig. 2a to save space. Taking into account only the diagrams in Fig. 1 
results in the self-consistent Gaussian approximation (SCGA), which 
describes rather well the thermodynamics of three dimensional 
ferromagnetsJ j~ The analytical form of A~(k) in Fig. 1 reads 

^(I/D) A~(k) = , 4 ~  + A~  (k) (2.4) 

where ~(l/o) A ~  (k) is the sum of the diagrams represented in Fig. 2a vanishing 
in the limit D---, co (see appendix), and /7~ is the renormalized two-spin 
cumulant average given by c8'~~ 

1 
.71~,~, - n( D _ i)/~,_ f d o  - b" exp( - r  2) A~(~) (2.5) 

d 

Here A,~ is one of the cumulant spin averages of the general type ~8) 

A~,~., .... "(~) =0~,,  0~ . , . . . 0~r  (2.6) 
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obtained through the generating function A( ( )=  In Zo(~), 

Zo(~) = const. ~-w/2- lqD/2 - 1(~) (2.7) 

is the partition function of the D-component classical spin, Iv(~) is the 
modified Bessel function, 

=fl(H + m J0) + 211~/-' r (2.8) 

and r is the (D-1)-component  vector perpendicular to H. The last term 
in (2.8) describes the Gaussian transverse fluctuations of the molecular field 
H + mJo with the dispersion proportional to 1~, which leads to the renor- 
malization of the cumulant spin averages described by (2.5) in the case of 

(l/D) A~, and by analogous formulas for the other cumulants entering ,/i~ (k) 
(dashed ovals in Figs. 1 and 2). This renormalization results from the block 
summation of all the one-loop diagrams with the transverse interaction in 
Fig. lb; the quantity l~ is given by the integral over the Brillouin zone 

I dq flJ,~ (2.9) 
l~ =~  v0 f (2n) a 1 - A ~ ( q )  flJq 

where Vo = a g, a0 is the atomic spacing, and d is the lattice dimensionality. 
The (D-1)-dimensional integral in (2.5) can be simplified by taking 
advantage of the symmetry with respect to the transverse variables and 
using the explicit form 

A=(~) = - ~ -  1-  + B'(~) ~ (2.10) 

where 

B( ~) = OA( ~)/O~ = Io/2( ~)/ID/2- i( ~) (2.11) 

is the generalized Langevin function and B'(~)=dB/d~. Making in (2.10) 
the substitution ~ = ~ / ( D - I )  with ~,.-211~/2r and in (2.5) the partial 
integration to get rid of B', one obtains 

2 E 71~-F((D+ 1)/2) dr rD exp(-r2)  B(C___)(, (= I~1 (2.12) 

The formulas (2.4), (2.12), (2.8), and (2.9) determine implicitly the compact 
part of the spin-spin correlation function A~(k) entering the basic expres- 
sion (2.1). 
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1/0) By the expansion in powers of 1/)9 the quantities ,.]~ a n d / / ~  (k) in 
(2.4) give rise to terms starting from the zero and from the first orders in 
l/D, respectively, whereas the expansion of all other diagrams neglected 
here starts from lID 2. Before proceeding with the calculations we make a 
reference to the simplest approach--the mean-field approximation 
(MFA)-- in  which no diagrams with the integration over wavevectors are 
taken into account. In this case/~ ~ 0 and ~ = ~ = fl(H + mJo), and in (2.4), 
^(1/D) Aa~ ::~ A~ (k)=~0, A~=~B(~)/~. Now with the use of (2.1) and (2.2) one 

gets the Curie-Weiss equation m = B(~) for the magnetization m, which 
yields the phase transition temperature T ~ r A =  ]Jo[/D. The latter has no 
physical significance for one- and two-dimensional magnets, but can be 
used as a temperature scale. It is convenient to introduce the dimensionless 

TIT MFA, magnetic field h-H/JJo], and susceptibility temperature 0 -  c 
)?-= [Jolz- Then the formulas (2.1) and (2.9) can be rewritten as 

(~k ~- _---- 1~, 1 dq 2q (2 .13)  
2• - 1 - Vdk2 k' O =2-0 Vo ~ (2n) a 1 - F(~q2q 

w h e r e  ~k ~-- (D/O) d~(k) ,  v = _ I for ferro- and antiferromagnets, and 2 k - 
Jk/Jo. In the integral (2.12) the product r D e x p ( - r  z) is at large D sharply 
peaked at r = ro = (D/2),/2, whereas B(~)/~ changes slowly with r. Using the 
expansion of B(~), (2.11), for D ,> 1/81 one can write 

B(~) 2 (  1 x-" , ) 1 
~-~ g ( x ) + ~  l -~-~xzg-(x) , g ( x ) - l  +( l  + x2)U2 .(2.14) 

where 

x = 2~/D = x(f) = (4(h + vm)2/O 2 + ,'r ~',u" ~Gr-j -, f--- r/r o (2.15) 

and evaluate (2.12) by the pass method. In the first order in 1/D for 
=- (D/O) f l~ one gets 

2 1 1 
= -  D A~G) 0 1 + [ 1 +4(h + vm)'-/O z + 87~] ~/z + - -  

(2.t6) 

where 

' 1 2/ '  x- a l a g  a2g'~ 
1--s g 

(2.17) 

is the I/D correction to the Gaussian integral (2.12) and the derivatives of 
g are calculated with the use of (2.14) and (2.15). The first term of (2.16) 
also contains the 1/D corrections due to the corresponding corrections to 
m and )'~. 
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Before proceeding further with the 1/D expansion, we consider first the 
limiting case D-~  oo corresponding to the spherical model. 113~ In this case 
the quantities d ~ ( k )  in (2.4) and A Ic~ in (2.17) can be neglected, and one 
comes to the closed system of equations 

2 1 
G - (2.18) 

0 1 + [ 1 + 4(h + vmo)2/O 2 -b 81"~o ] 1/2 

and 

f dq 1 I'~~ ' P(G)=vo (2n ) " l -G2q  (2.19) 

Here for the square lattice with n.n. interaction the lattice integral P(G) is 
given by P(G)= (2/n)K(k) with k =  G, K(k) being the elliptic integral of 
the first kind, and for the linear chain P ( G ) =  1 / (1 -G2)  u2. For bipartite 
lattices considered here the integral P(G) is the same for ferro- and 
antiferromagnets and independent of the sign of G. For this reason the sign 
factor v is dropped in the definition of P(G), (2.19). Note that for one- and 
two-dimensional systems P(G) diverges for G--* 1, which is the reason for 
the absence of long-range order. Eliminating now T~o from (2.18) and (2.19) 
and using (2.2) in the form 

n'/o G 
(2.20) 

h 1 - vG 

one comes to the equation of state of the spherical model: 

OGP(G) = 1 - m o (2.21) 

which for h :/:0 should be solved together with (2.20) (in the general case 
numerically). For low-dimensional antiferromagnets (v = - 1  ) at low tem- 
peratures (0 <~ 1) in the field region where m o < 1 Eq. (2.21) requires G--- 1 
and, correspondingly, P(G)~ 1. For the square-lattice model for P(G) and 
its derivative P ' - d P / d G  this implies 

,-too 
P( G) ~-- In --- 

n 0 
(2.22) 

P'(G) -~-  - - - - -exp 
n 1 . - G - 8 n  

i.e., the deviation of G from unity is exponentially small: 

G ~ e - 8 e x p [  n( l -m~ (2.23) 
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For the linear chain model the corresponding result reads 1 - G - - -  
0"-/[2(1-mo)2].  Now with the help of (2.20) one gets for the magneti- 
zation mogh/2 with only exponentially small corrections in the two- 
dimensional case due to (2.23). The latter is valid up to the magnetization 
saturation point h = 2 (i.e., H =  2 [J0[), which corresponds to the spin-flip 
field of three-dimensional antiferromagnets. For the fields h > 2 according 
to (2.20) and (2.21), m 0 -  1 and G <  1: 

mo ~ 1 -- (0/2) GP(G); G ~ 1/(h - 1 ) (2.24) 

In the zero-field case the antiferromagnetic susceptibility 2(0)=2• =)?_-= 
G/(I +G) monotonically decreases from the value 1/2 at 0 = 0  to 0 at 
0 ~  0% i.e., the spherical model does not describe the maximum of the 
antiferromagnetic susceptibility at 0 < 1. 

Now, returning to the 1/D expansion, one can express the 1/D-correc- 
tion term A ~cl in (2.16) through the variables of the spherical approximation: 

A~c~=2G[ y - I  P - 1  ( P - 1 ) 2 ( 3 y - 1 ) . l  1 
2 y -  1 2 ( 2 y -  1) 2 (~y--~y3- , y - o - ~  (2.25) 

and represent the unknown quantities m, )',, and ~k [see (2.13)] in the 
form 

m ~- m o + m i/D 

I~ ~- 12o + "{~1/D (2.26) 

(~k ~- G + AGk/D 

Here the corrections m~ and l'~ can be expressed through AG k with the use 
of (2.13) and the relation m/h = 2 •  Go/( 1 -  Vdo), which results in 

ml AGo 
h - (1 - vG) 2 (2.27) 

and 

7~ l 1 dq 2~ AGq 
= ~  v0 f (2~r)a (i -- vG2q) 2 (2.28) 

Expanding now the first term of (2.16) up to the first order in mm and 7=1, 
one comes to the 1/D part of Eq. (2.4): 

mo 2m~" y O 2 dq ~ dGq + d ~1/o~ 
AGk+vh2y_ lAao+2--~_ lvo f (2rc )a(1  va2q) 2=A~a) 

(2.29) 
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where the quantity d k'/D) is the part of D. (D/O) "(l/D) A N (k) nonvanishing in 
the limit D---)~ (see appendix). The solution of the integral equation 
(2.29) has the form 

AG k = AGo + M k (2.30) 

where 

Mk =~kAll/D) --=o/lll/D) (2.31) 

and AGo is given by 

AGo={(2y_I)(AIG)+d~ol/D))_G2vo I dq d.~Mq l 
(2n) a (1 -- vG2q)2J 

, 2moY -I GP + P(G) + q-------~j~_vu_ (2.32) X 

Now, calculating the quantity A~ I/DJ (see appendix) and introducing the 
function 

f dp 1 
rq=V0 (--~)dgp gp-q, ga~ I --vG2p (2.33) 

one arrives after numerous cancellations at the final results for AGo 
and M k: 

{ I I d q g ~  dq gq ..bmo yVo (~'-~)d ~ AGo=2G 1 - [ G P ' + P + 2 m s y ) ] v  o (2~)aFq 

G Vo j --dq q~GP' + P--v=~-Z--~; (2.34) 
r' , 2moY ]-I  

+'~ 
(2rOa?qJ[ 

and 

dq gq-  gq-k (2.35) M,--2GVo f ;q 
- ? t where r q = r q + 2 m  8ygq and rq=0rq/OG. Similar results obtained 

earlier (14,151 by another method for the particular case of ferromagnets were 
used for the investigation of .the phase transition in three dimensions. It is 
interesting to note that the function rq of (2.33) is [like P(G)] identical for 
ferro- and antiferromagnets and has a singularity at G ~ 1 and q ~ 0. In 
contrast, the quantity ?q entering (2.34) and (2.35) has for antiferromagnets 
one more singularity at G--* 1 and q--* b (b is the inverse lattice vector 
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corresponding to the corner of the Brillouin zone) due to gq, which disap- 
pears, however, in zero magnetic field (mo = 0). This is a formal mechanism 
responsible for the singular behavior of the susceptibility x(H, T) of 
low-dimensional antiferromagnets in the limit H, T--, 0 discussed in the 
Introduction. 

Before proceeding with the application of the results obtained to con- 
crete systems, it is worth noting some general properties of the k-dependent 
spin-spin correlation function [see (2.1) and (2.13)] that can essentially 
simplify the consideration in the low-temperature range. In particular, for 
two-dimensional ferromagnets in the spherical limit the quantity G in 
(2.23) is exponentially close to unity at h =0  and low temperatures, which 
implies exponentially small gap in the spin-wave spectrum. Since this 
property cannot change upon taking into account 1/D corrections, the 
quantity ziG0 in (2.30) also should be exponentially small. This is physi- 
cally clear and can be confirmed by the direct analysis ~8) of the results 
obtained. On the other hand, the k-dependent contribution M k in (2.30) 
does not have to be exponentially small at low temperatures and k :~ 0. In 
fact, the value M b determines the I/D correction to the antiferromagnetic 
(staggered) susceptibility of a ferromagnetic model (J > 0) in zero magnetic 
field, t8~ which can be expanded in powers of 0 4  1. Thus, by calculation of 
such quantities of two-dimensional magnetic systems at low temperatures, 
which are not exponentially small, one can use only the quantity M k of 
(2.35), being much simpler than the expression for AGo, (2.34). This means 
that only k-dependent diagrams for the compact part of the spin-spin 
correlation function ,4,~(k) should be taken into account in the low- 
temperature range, which is a clear advantage of the diagrammatic 1/D 
expansion in comparison with the earlier version. ~4'~5~ The considerations 
above can be extended also to two-dimensional antiferromagnets (J < 0) at 
low temperatures in the field region h < 2 ( H <  2 I J01), where the magnon 
gap is also exponentially small. Here the quantity (~b in (2.13) should be 
exponentially close to unity in all orders in 1/D. Consequently, the quantity 
AGo contributing to the magnetization and susceptibility of an antiferro- 
magnet [see (2.27)] is given according to (2.30) by zIGo=zlG~-Mb~ 
- M  r. In the next sections we apply the results of the first order in 1/1) 
obtained above to the analysis of the equation of state re(H, T) of one- and 
two-dimensional classical antiferromagnets. 

3. THE LINEAR CHAIN CLASSICAL SPIN MODEL 

For the linear chain model 2k-JJJo=cos(aok), and the integrals 
(2.33) and (2.34) can be calculated analytically. One gets rq=2P(G)/ 
(2 -- G 2 - -  G2,~q) with P(G) = 1/( 1 - -  G 2 )  I /2 and 
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2G(1 - mo)(l - G2) 3/z { 3 5 + 31,70 - 2too G2 
z l G o -  - - 7 - - 7 7  - - - -~--  1 + ~  P(G) 

1 +m?)+2m?~vG 211 +too(1 - G 2 ) ]  F 

+ -2 1 - too( 1 - vG) [ 1 - G" ( 1 - vG) - 3( 1 - m?)) - 2vGm?3 

(3.1) 

where 

I +too(1 - G  2) 
F -  (3.2) 

[(1 + ,770)-' ( 1 - G 2) + 2G2mo( I - ,77o)(1 - vG)] ,/2 

The magnetization mo and the parameter G of the spherical model in (3.1) 
and (3.2) are given by the solution of (2.20) and (2.21). It can be shown 
that in zero magnetic field the results for the susceptibility Z are equivalent 
to those obtained by the expansion of the exact solution ~j2~ up to the first 
order in 1/D. In the low-field and low-temperature limit h, 0 <~ 1 one has 
mo~-h/2 ~ l, G_~I -O 2, and hence F_~(h2 +02)-1/2~ l. Taking into 
account the leading contribution to AGo given by the first term in square 
brackets, one gets with the use of (2.26) and (2.27) the result 

m 1 [ , 1 (  0 )] 
)~• = ~ = ~ (h 2 + 02) ,/2 + 0 + O( 02 ) (3.3) 

It can be seen that for h = 0 the susceptibility ,~• decreases with lowering 
temperature due to the term 0 in (3.3) and attains the value 2 •  
�89 - 1 / D )  at 0 = 0 .  I fh  S0 ,  then at 0 = h  2/3 the value of;?• attains a mini- 
mum and then rises to 1/2 at 0 = 0 .  Note that the singular term in (3.3) 
becomes of order unity at O~ h ~ h  2Is, which is one more characteristic 
temperature. Such a qualitative behavior of the susceptibility of a low- 
dimensional classical antiferromagnet is in accord with the physical con- 
siderations in the Introduction. The longitudinal susceptibility ;~- calculated 
with the help of (2.3) and (3.3) has the form 

[ 0, _ O m  1 1 + 1  
Z-- = ~-~ = 2 (/72 + 02) 3/2 (3.4) 

This expression has a minimum at 0_~31/3h 2/3>>h and a maximum at 
O-~3-1/2h3/2<~h (the third characteristic temperature) where ;?_.~ 1/2+ 
(2/D)(h/3) 3/2 > 1/2. The susceptibilities ;?a_(h, 0) and ;[,__(h, 0) are represented 
as functions of temperature for some field values in Figs. 3 and 4. 
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Fig. 5. Field dependence of the longitudinal susceptibility of the l.c. classical Heisenberg 
antiferromagnet for different temperatures. 

An interesting feature of the susceptibility ,f,_. manifests itself in the 1/D 

approximation in the low-temperature limit (0,~ 1) in the vicinity of the 
magnetization saturation point h = 2 (i.e., H =  H , . -  2 [Jo[). In the spherical 
limit, adopting mo = 1 - 6 m o  and G = 1 -  fig with &no, fG,~  1, one can 
simplify Eqs.(2.20) and (2.21) for the linear chain antiferromagnet to 
0/ (26G)  m = 2tim o and 2f imo-  6G = 2 - h, which results in the following 
equation for 6m o in the scaled form: 

x - 1/( 16x 2) = Xo; x =-- Omo/O 2/3, X 0 = (2 - h)/(202/3 ) (3.5) 

This equation describes the temperature-induced rounding of the transition 
between the dependences m o ~-h/2  and m o-~ 1 in the small field interval 
1 2 - h [ ~ O  2/3. Now, the l I D  correction mj determined for [ 2 - h i ,  0 4 1  
from (2.27) and (3.1), (3.2) has the form 

m l ~ - 6 m o ( 3 - 3 Y - l / 2 +  y t / 2 ) / Y ,  Y - l + 6 m o / 6 G = l + 8 x  3 (3.6) 

where x is the solution of (3.5). In the limiting cases one gets from (3.7) 
and (3.6) for the magnetization m - - m  0 + m  t/D the following results 
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1 t9 02 
~ +  D 2 ( 2 - h )  ]/2 [ 2 ( 2 - h ) ]  2' 0 2 / s ~ 2 - h ~  1 

m ~  1 -  1 -  3 ~ (61/2--1) , h = 2  (3.7) 

0 ( 1 )  
1 [8 (h_2 ) ] ] / 2  1 -  , 0 2 / 3 ~ h - 2 ~ 1  

It can be seen from (3.7) that in the field region below the saturation point 
h = 2 the temperature-dependent correction to m is positive. Accordingly, 
the susceptibility 2'_- = Ore~Oh exceeds 1/2 in this region, but the effect is not 
great. With the use of (3.6) one can show that for D = 3, 2--.m,x = 0.518 at 
2 -- h = 2.80- 0 -'/s. The field dependence of the normalized susceptibility 2_- 
of the one-dimensional classical antiferromagnet is represented for different 
temperatures in Fig. 5. It is interesting to note that a qualitatively similar 
field dependence of the susceptibility with a logarithmic singularity at small 
fields was found in ref. 16 for the quantum linear chain Heisenberg 
antiferromagnet with S = 1/2 at T =  0. There are no physical comments to 
this effect in ref. 16, but it seems now rather plausible that the origin of this 
low-field singularity of a quantum antiferromagnet is also the orientation of 
sublattices perpendicular to the field (see Introduction). For  H ~  0, quan- 
tum fluctuations destroy this orientation, and the susceptibility diminishes. 

4. THE SQUARE-LATTICE CLASSICAL ANTIFERROMAGNET 

In two dimensions the integrals in AGo in (2.34) cannot be calculated 
analytically. For the convenience of the analysis at low temperatures and 
numerical calculations we introduce instead of the strongly singular rq of 
(2.33) the weak-singular function 181 

1 I" dp ,~q - -  G,,~p,~.p_ q l 
j = G-- 5 [2P(G) - 1 - ( 1  - G ~ q )  r q ]  u o ( 2 g )  d ( 1 - -  G~.p)( 1 - -  G,)~p_ q) 

(4.1) 

m which the divergence of the integrand at p = 0 and p - -q  at G---1 are 
partially compensated by the nullification of the numerator. In the long- 
wavelength region the function ~q has the form Is~ 

2_ In x - (aoq) 2 ,~ 1 -- G 
8 1 

8, rc (4.2) 

0q~_~ 7"C ~ - ~ -  1 - - ,  

l n -  1 - G ,~ x ,~. 1 
X 
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and its derivative O'q- O~q/OG is given by 

f2! , ~  -~1 G' x < l - G  

~lq~__ X 
k - ~ x l n  1 _ - - ~ ,  1 - G < x < l  

At low 
- 1 + O(1 - G). In terms of ~q 

GP' + P + 3m 0 y dq 1 G2q 
2~-~i UOo (2~)dl ~ --a~q 1-~'-(~q,~q AGo=2G ( l-v)  

G [" dq a~'q 1 + G2q 
+ ~ - v o j  (2zr)a 1 - a ~ q  1 +(~q2q 

_ 3 y - 1  ~ dq 1 l + G 2 q  

2 y -  1 v~ J (27t) a 1 -aqJq 1 + (~q2q 

3 p 1 dq 1 "~ 
"~- ~-~- (G)--~ u 0 1 Gq~q (27r) a I + J 

{ 2"'~ - '  
x G P ' + P ( G ) + I _ v G  ) 

(4.3) 

temperatures in the corners of the Brillouin zone ~bb= 
the function AGo of (2.34) can be written as 

(4.4) 

where y = 1/(OG), a - GZ/(2y - 1), and 

[ l a q = G  1 - ( 2 y - -  1)(1 --al / /q)J  (4.5) 

For the quantity M k of (2.35) one gets in a similar way 

2G C dq (l--G22Zq)(gq--gq_k) 
Mk -- Vo J (4.6) 

Putting k = b in (4.6) in the antiferromagnetic case ( v = -  1) and taking 
into account only the exponentially great terms with P'(G) in AGo, (4.4), 
at low temperatures in the field range h < 2, one arrives at the result 

dq 1 2q f A Go Mb 4at, o ( 4.7 ) 
J (2n)a 1 -- a~b q 1 -[- Gq 2 q 

which confirms the conjecture made at the end of Section 2. Since at 0 < 1 
I1 one has a_~(O/2 ) / (1 -8 /2 )<1  and due to (4.2) the functions ~bq are 
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integrable, one can expand (4.7) in powers of a~,q and then of 0 to get the 
development of the lID correction to the magnetization m~ in (2.27) at low 
temperatures. In the lowest order in 0 one gets 

hO 1 -- P( G) 
m l =  2 1 - 2 m  0 (4.8) 

where (J=~ G( 1 -2m0)  and m o g h/2. This correction is negative for h < 21/2 
and positive for 21/-'< h < 2. In the case h • 0 the quantity 1 -  (J can be 
interpreted as proportional to the field-induced gap of the out-of-plane spin 
waves, which makes the lattice integral P(G) in (4.8) not divergent at low 
temperatures. A more detailed physical interpretation of the spin-wave 
dynamics in low-dimensional magnets requires, however, the dynamical 
generalization of the diagram technique used here. In the small-field region, 
where (72 1, with the help of (2.26) and (2.2) in the first order in 1/D one 
gets 

2• = ~ = 2 1 - G + h2/2 + 0 + 0(02) (4.9) 

where G is given by (2.23). In the case h = 0  the In term in (4.9) is identi- 
cally equal to - 1 ,  and 2 • 1 8 9  in the limit 0 ~ 0 .  For arbitrary 
small field h 5 0  this term goes to zero with 0 ~  0, and Z l  ~ 1/2. The 
transition to the regime where the magnetic field exerts an influence on 
the susceptibility of a two dimensional antiferromagnet is sharp due to the 
strong exponential temperature dependence of G, (2.23), and occur at the 
temperature 

7~ 
0 ~ 0 "  - - -  ( 4 . 1 0 )  

2 ln(4/h) 

Note that for h ~ 1 the value of 0* is much larger than the corresponding 
characteristic temperatures in the one-dimensional case [-see (3.3) and 
(3.4)]. The longitudinal susceptibility of the s.1. classical antiferromagnet 
has the form 

2~=-~ I§  - ln l _ G + h 2 / 2  f-7~l-G-+h-'/2 + +0(02)  

(4.11) 

where the additional term in comparison to (4.9) is not very essential at 
low fields, in contrast to the one-dimensional case [see (3.4)]. The tem- 
perature dependences of 2_L and ~_ in a magnetic field obtained by the 
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numerical solution of Eqs. (2.20) and (2.21) and the numerical integration 
in (4.4) are represented in Figs. 6 and 7. 

The 1/D correction to the magnetization (4.8) diverges upon 
approaching the magnetization saturation point h = 2, since here (7---, - 1  
and P ( G ) ~  or. In fact, the formula (4.8) becomes inadequate in this 
region, because in (4.4) the integral with q/q [see (4.3)] becomes for 
d ~ - 1  comparable with the one with P'(G) due to the large long- 
wavelength contribution, and the quantity m] remains finite. In contrast, 
the quantity affq in the denominators in (4.4) and (4.5) can be neglected in 
the whole field region, since in the low-temperature range a~b o _~ OP(G)_~ 
1 - m  o. In the field region above the saturation point (h >2)  at low tem- 
peratures too= 1 and in (4.5) ( ~ q ~ - G .  Neglecting the terms OP'~I  in 
3G0, (4.4), with the use of (2.24) for the total magnetization m =  
mo+ m ~/D, one gets 

~( 1) 1 (h>2, 0,~ 1)(4.12) m ~- 1 - 1 - -  G P ( G ) ,  G ~-  h - 1 

This result is the exact expression for the leading correction to the 
magnetization of a classical antiferromagnet in the spin-flip phase 
( H >  2 IJol) in the low-temperature limit, which can be obtained independ- 
ently with the help of the lowest order spin-wave theory. In the framework 
of the diagram technique for classical spin systems used here this 
corresponds to taking into account only the simplest diagram for the 
magnetization m with one integration over the Brillouin zone (i.e., the one 
analogous to the second diagram in Fig. lb). The derivation of the formula 
(4.12) is trivial, because the ground state of the system has no spontaneous 
symmetry breaking and the magnon spectrum has a gap. However, with 
the approach to h = 2 in (4.12) G---, 1 and for low-dimensional systems the 
spin-wave correction to m diverges. In the region h <2  the situation 
becomes complicated, and to obtain finite results for the thermodynamic 
quantities one has to take into account an infinite series of diagrams, which 
is exemplified by the 1/D expansion described above. With the help of (4.8) 
and (4.12) one can write down the expressions for the magnetization of the 
two-dimensional antiferromagnet on both sides of the magnetization 
saturation point h = 2 excluding a small intermediate region: 

{ i0 1 ~--~ In ~--~_ h, 0 In ~,~ 2 - h , ~  1 

m ~  0 ( 1 )  8 1 
~n 1 -  l n h ~ ,  0 1 n ~ , ~ h - 2 , ~ l  

(4.13) 

822/83/5-6-9 



926 Garanin 

Fig. 8. 

0 6 -  

0 5  

0 4  

0 3  

O2 

0.1 

2- a=o.1 \ \ t l  
3- 8=0.3 \ \  I L 

0= r/r~c r ~ 
H e i s e n b e r g  a n t i f e r r o m a g n e t  

0 0 5  1 15  2 2 5  
h=H/IJol 

Field dependence of the longitudinal susceptibility of the s.l. classical Heisenberg 
antiferromagnet for different temperatures. 

The latter results are analogous to those for the linear chain model (3.7), 
which could also be obtained in the same way as here. The normalized 
susceptibility ;?__ of the two-dimension antiferromagnet is greater then 1/2 
below the saturation point h =2 ,  too, and the maximal value of ~,__ is 
greater than that for the linear chain (see Fig. 8). The latter can be 
explained by the fact that for a square lattice there is no competing negative 
contribution to m of the zeroth order in l/D, as is the case for the linear 
chain [see (3.7)]. 

5. D I S C U S S I O N  

In this article the 1/D expansion of the physical quantities of low- 
dimensional classical D-vector models in the whole range of temperatures 
and magnetic fields was developed, the results obtained being valid for 
both ferro- and antiferromagnets. For the calculation of the susceptibility 
and the field-induced magnetization of ferromagnets at low temperatures 
the method is, however, not very efficient, because these quantities are 
singular at T---, 0. In ref. 8 it was shown that at low temperatures the lID 
correction to the susceptibility of a two-dimensional ferromagnet becomes 
greater than its value in the zeroth order in l/D, which means that D enters 
the argument of the exponentially great expression for X oc 1/(1 - G0) [see 
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(2.22)]. This is in accord with the results of the RG approach of ref. 17, but 
does not allow one to obtain accurate results in the framework of the 1/D 
expansion. 

On the other hand, the 1/D expansion proves to be a very good instru- 
ment for the description of noncritical characteristics of low-dimensional 
magnets, such as the magnetization and susceptibility of antiferromagnets 
and the energy and heat capacity of both ferro- and antiferromagnets. For 
the latter the zero-field results (identical in both cases) were obtained in 
ref. 8, and their generalization for the case with a magnetic field with the 
use of the methods developed here offers no difficulties. The most 
remarkable feature of the results obtained with the help of the lID expan- 
sion is that they describe the maximum in the temperature dependence of 
the zero-field antiferromagnetic susceptibility and its singular behavior at 
H, T ~  0. The former is the result of taking into account the diagrams with 
double integrations over the Brillouin zone, which was not done in any of 
the preceding theories. This means allowing for the wavevector dependence 
of the compact part of the spin-spin correlation function (2.1) as well, or, 
in the other words, going beyond the Ornstein-Zernike form for xk. 

An intriguing property of the lID expansion is that it leads to the 
exact results for the noncritical characteristics of low-dimensional magnets 
at low temperatures. All the examples considered up to now suggest that 
for H =  0 the coefficients in the expansions of the noncritical quantities in 
powers of 0 are polynomials in 1/D (see ref. 8). If this is true, then the 
hitherto unavailable low-temperature expansions of these quantities can be 
obtained with the help of the lID expansiont Further, this should imply 
that there is some method of derivation of these low-temperature expan- 
sions without using the 1/D expansion. A search for such a method is 
planned for the nearest future. 

It would be very interesting to compare the results of the lID expan- 
sion with results obtained by other methods. In particular, for the energy 
of a square-lattice classical Heisenberg magnet, MC simulations were made 
by Shenker and Tobochnik ~ (see the comparison in ref. 8), but the 
antiferromagnetic susceptibility was simulated by various researches only 
for a quantum model with S = 1/2. As concerns the two-dimensional model 
with D =2, the 1/D expansion cannot, naturally, describe the Kosterlitz- 
Thouless transition, which occurs in this system. But one can expect that 
the general features of the temperature dependence of the antiferromagnetic 
susceptibility in magnetic fields described by the lID expansion are 
inherent for this model, too. Moreover, in a magnetic field the behavior 
of the antiferromagnetic model with D = 2  should simplify, because the 
magnetic field lifts the spontaneous symmetry breaking and induces the gap 
of spin fluctuations. In this case at low temperatures it is enough to take 
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into account only the lowest order diagram of the spin-wave theory, which 
is naturally contained in the 1/D expansion in the first order in I/D [see 
(4.12)]. It should be stressed that for the model with D = 2  the effects in 
the temperature and field dependences of the antiferromagnetic suscep- 
tibility discussed in this paper should show up most strongly. For  the 
Heisenberg (D = 3) antiferromagnet the behavior in the magnetic field can 
be more complicated than for D = 2. As we have seen, at low temperatures 
even a small magnetic field forces the spins to lie perpendicular to it. This 
decreases the effective number of spin components from D = 3 to D = 2 and 
should lead to the Kosterlitz-Thouless transition with disappearance of the 
gap. But it should not change essentially the results for the susceptibility in 
this region, since in the expression for the 1/D correction to the magnetiza- 
tion (4.8) one has the gap of the out-of-plane spin waves, which cannot 
disappear due to the Kosterlitz-Thouless transition. 

It also should be mentioned that the D-component vector modeP 9~ 
considered in this article can be generalized for Hamiltonians with spin 
anisotropy. For  example, one can consider the so-called n-D model, ~'~ in 
which only 17 from the total D spin components are coupled by the 
exchange interaction. In this sense the x-y  model (D = 3, 17 = 2) is different 
from the plane rotator model (D = 77 = 2). It should be noted that the quan- 
tities n and D play different roles: the well-known expansion of the critical 
indices of three-dimensional systems is an expansion in l/n, and the expan- 
sion developed here for low-dimensional systems is a lID expansion. The 
results of the present article can be generalized for the n-D model, as well 
as for more general models with anisotropic spin interactions. 

APPENDIX.  THE lID D I A G R A M S  

The additional diagrams constituting ^~1/nl A~ (k) in the expression for 
the compact part of the transverse spin-spin correlation function ,4~(k) of 
(2.4) represented in Fig. 2 have the following analytical form: 

"121 1 ~ ^ dq A~,~ = "~ A~,~pp,,,,A /,/,,,,,v o I ~ V. ~rq 

^(31 - -  ^ dq 

314) 1 . . . .  , 

~zn) - 



I/D Expansion for Classical Magnets 929 

^~5, k d q  - 

.r~ {6) --2 dq - ~ = (k)= A,:~zVo Y (~2~)aflJk-qflJ:q 

A= '̂7+ 7')(k) = 2/~=/jaA ==/1 fl[izUo f ~ t  7"~1 fl,~k_ qflJ_q_ V q 

A =  (k) = A==IjaA=~,;,A alj:A,e~,__v o ~Yk_.~Y:q v~ 
t-  ) 

(A.1) 

Here fl=p/j=~pp;,~,, ,,~,~=3pp__, etc., are the renormalized multispin 
cumulants with 7 r 1 6 2  [no summation over fl and 7 in (A.1)] given by 
the formulas analogous to (2.5). As the diagrams (A.I) should be 
calculated only in the first nonvanishing order in I/D, one can use for the 
renormalized transverse interaction line fl,Tq (see Fig. lc) the simplified 
expression fl.lq ~flJq/(1 --71aaflJq), where/]=~ = (O/D)G and G corresponds 
to the spherical model [see (2.21)]. The renormalized longitudinal interac- 
tion flJ_.q (see Fig. 2b) is given by 

flY:. - flJq (A.2) 
1 - (~__: + AL_- ~'q)/~J. 

and the renormalized four-spin correlation line Vq (see Fig. 2c) reads Vq = 
Vq/( 1 -/l=/j/~ Vq), where 

D f Vq = j (A.3 -v0 ~ ) P 

is the unrenormalized four-spin correlation line, the factor D (or D- -1 ,  
which plays no role here) in (A.3) resulting from the summation over the 
spin-component indices fl and ? in the diagrams. Calculating now the 
renormalized cumulants A in (A.1) in the lowest order in 1/D by the pass 
method, one gets ~8~ 

_ /2"~3 1 . _  /2x~ 5 2 ( 3 y - 1 )  
A~aa ~ -- ~,D) ~ , D ) ( 2 y )  2 (2y - I )' A=aa~'~' = (2y) 3 (2y -- 1 )3 (A.4) 

with 3' = 1/(OG) and, additionally, 

/7 =ep_ ~/7  =ap~,,, 
(a.5) 
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where ~ = (D/O)(h + vmo)= Dymo. With the use of these results for the 
corresponding contr ibut ions into A~ jim -= l imo_  ~_ [(D2/O) A~/~ , ,~, one 
obtains 

A~I, - vG2 [ l _ 4 m o Y  3 3 , - 1  ] 2@qa 
2 y - 1  ( ~ y - - i ) 2 J  Uof ( ) :qz 

c2~_ 33 ' - -1  f dq d ~ - - 2G s )-----7 Vo (2y -- 1 ~ (Pq~q 

I dq A I 3 ) -  - - S v m o Y  G4 , ----J,4 Vo :xa -- t./-.) - - l )  (-27/') d ~'.'+qt~q 

+~ 6 3 y - - 1  f dq - . ,  
3 1 4 ~ - 4 v m ~ y G  - -  Vo 

== (k) = ( 2 y -  1 - - - - ~  o (2~)'  -q  q 

4m?) y G  
a ~ 6 + 7 + v ' + s ' ( k ) - ( Z y _ l ) _ , V o  ( ) ~-k-q2_-qL{ 

(A.6) 

where (/Oq ~ qgqLq ~ r 1 + 8qIq), a ~ G2/(2y - 1 ), 

(/Oq = UO f 2_2~d ~ .~  p q; -- .Tq )~.q ( ) _ )~q ~- Z-~-- 1 __ vG}~q (A.7) 

The expression for the renormalized _--interaction line 2__q = J:q/Jo can be 
written in the form 

9 2 ) 2q --l'Tl ~ "~; 
q, G:q=6  1 ~ y = i  Lq (A .8 )  

Further  simplifications leading to the results listed at the end of  the 
Section 2 can be archieved if one expresses (pq and 2q through rq and gq of 
(2.33) with the use of the relations 

- 9 (23' - I )( 1 + a(Dq) = rq ~ rq "~- -D'l~ y 

vG~,q = gq - 1; ~Zq = rq dr 2m o yqq 

vG~zq --- gq - 1 - 2m o y( gq - 1 )2/?q 

"Gi :qLa=(gq-1 ) i ,~Lq-  2mo)m - 

(A.9) 
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